Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

Rawski, M.; Zuk, J.; Kulik, M.; Drozdziel, A.; Li, L.; Prucnal, S.; Pyszniak, K.; Turek, M.

Abstract

Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very
attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of
diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce
dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC.
However, post-implantation radiation damage, which strongly deteriorates required electric properties of the
implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore
implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the
level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this
study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman
spectroscopy investigations of room temperature and 500 ±C Al+ ion implantation-induced damage in 6H-SiC and
its removal by high temperature (up to 1600 ±C) thermal annealing.

Keywords: ion implantation; SiC; Raman spectroscopy

Involved research facilities

Related publications

  • Open Access Logo Acta Physica Polonica A 120(2011), 192

Permalink: https://www.hzdr.de/publications/Publ-16316