Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories


Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories

Behrends, T.; Krawczyk-Bärsch, E.; Arnold, T.

Abstract

Present strategies for the long-term disposal of high-level nuclear wastes are based on the construction of repositories hundreds of meters below the earth surface. Although the surrounding host-rocks are relatively isolated from the light at the earth surface they are by no means lifeless. Microorganisms rule the deep part of the biosphere and it is well established that their activity can alter chemical and physical properties of these environments. Microbial processes can directly and indirectly affect radionuclide migration in multiple ways. Within 6th FP IP FUNMIG the interplay between microbial biofilms and radionuclides and the effect of microbially induced redox transformations of iron on radionuclide mobility have been investigated. For the first time, formation of U(V) as a consequence of microbial U(VI) reduction in a multi-species biofilm was detected in vivo by combining laser fluorescence spectroscopy and confocal laser scanning microscopy. Furthermore, it was demonstrated that addition of U(VI) can lead to increased respiratory activity in a biofilm. Increased respiration in a biofilm can create microenvironments with lower redox potential, and hence induce reduction of radionuclides. Transient mobilisation of uranium was observed in experiments with iron oxides containing adsorbed U(VI) in which the activity of sulphate reducing organisms was mimicked by sulphide addition. Faster reaction of sulphide with iron oxides compared to U(VI) reduction, and decreasing U(VI) adsorption due to the transformation of iron oxides into FeS can explain the observed intermittent U mobilisation. The presented research on microbe-radionuclide interactions performed within FUNMIG addresses only a few aspects of the potential role of microorganisms in the performance assessment of nuclear waste repositories. For this reason, this article provides additionally a cursory overview of microbial processes which were not studied within the FUNMIG project but are relevant in the context of performance assessment. Following aspects are presented: a) the occurrence and metabolic activity of microorganisms of several proposed types of host-rocks b) the potential importance of microorganisms in the near-field of nuclear waste repositories, c) indirect effects of microbial processes on radionuclide mobility in the repository far-field, d) binding of radionuclides to microbial biomass, e) microbial redox transformations of radionuclides, and f) the implementation of microbial processes in reactive transport models for radionuclide migration.

Keywords: microbial processes; radionuclides; repositories

Permalink: https://www.hzdr.de/publications/Publ-16359