CFD modeling of free surface flow with and without condensation


CFD modeling of free surface flow with and without condensation

Lucas, D.; Coste, P.; Höhne, T.; Lakehal, D.; Bartosiewicz, Y.; Bestion, D.; Scheuerer, M.; Galassi, M. C.

Abstract

This paper presents some recent developments on CFD models suitable to simulate free surface flows, which so far represented an unresolved matter for industrial nuclear reactors issues. While the general dynamics of such a large interface should be simulated in a CFD approach all sub-grid scale effects have to be modelled. Depending on choice of the general approach – one-fluid or multi-fluid models different closures are required. The momentum transfer between the phases is usually reflected by a drag model in a two-fluid approach. The drag force depends on the local morphology (free surface or dispersed bubbles/drops) and has to be anisotropic at the free surface. Surface tension has to be considered at wavy surfaces. The situation becomes even more complex if mass transfer occurs at the interface. Three approaches with different detailedness are presented. Examples for CFD simulations for free surface flow using different CFD codes and approaches are discussed.

Keywords: CFD; free surface flow; PTS

Permalink: https://www.hzdr.de/publications/Publ-16844