Binary and ternary surface complexes of U(VI) on the gibbsite/water interface studied by vibrational and EXAFS spectroscopy


Binary and ternary surface complexes of U(VI) on the gibbsite/water interface studied by vibrational and EXAFS spectroscopy

Gückel, K.; Rossberg, A.; Brendler, V.; Foerstendorf, H.

Abstract

The retardation of contaminants in aquifers is mainly determined by chemical reactions occurring at the solid/liquid interface. For a more detailed understanding of the molecular reactions of uranium(VI) at Al-hydroxide surfaces, the surface speciation of the radionuclide on gibbsite was studied in aqueous medium by a combined spectroscopic approach using time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. For the first time, the impact of the surface morphology and of atmospherically derived carbonate on the uranyl surface speciation was systematically investigated under environmentally relevant conditions, namely in the near neutral pH range, at maximum initial U(VI) concentrations of 20 µM, and at different surface loadings. Concordantly, the formation of a monomeric binary inner-sphere surface complex is derived from vibrational spectroscopic and EXAFS data irrespective of the prevailing atmospheric condition and surface loading. In addition, from infrared spectra it was found that U(VI) surface precipitation occurs at a micromolar concentration level after a relatively short contact time in an inert gas atmosphere. However, this is circumvented by lowering the initial U(VI) concentration or in the presence of atmospheric CO2 due to the formation of ternary uranyl carbonato surface complexes. The ternary complex was identified as a dimeric inner-sphere uranyl surface species containing a bidentately coordinated carbonate ligand. The results of this work might be of relevance for a comprehensive description of the dissemination of uranium in groundwater systems.

Keywords: uranyl; surface species; gibbsite; IR spectroscopy; EXAFS

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-16862