Diverging-converging spin vortex pairs in biquadratically interlayer exchange coupled elements


Diverging-converging spin vortex pairs in biquadratically interlayer exchange coupled elements

Wintz, S.; Bunce, C.; Banholzer, A.; Körner, M.; Gemming, S.; Erbe, A.; Raabe, J.; Quitmann, C.; Fassbender, J.

Abstract

Spin structures have been an interesting topic of magnetism research for many years. Within this field, magnetic vortices have attracted much attention, due to their non-trivial topology and the various dynamic modes they exhibit [1]. A magnetic vortex consists of a planar, flux-closing magnetization curl that turns out of the plane in the central nanoscopic core region. In a single layer structure, the curl’s radial components typically cancel each other out. Recent investigations show that this also holds true for multilayer vortex systems with bilinear interlayer exchange coupling [2]. Here we report on pairs of diverging-converging spin vortices occurring in biquadratically coupled systems. Using magnetic scanning transmission x-ray microscopy (STXM) we directly observe that the individual vortices of such pairs possess a residual radial magnetization component, i.e. ∇Mxy≠0. This implies an additional perpendicular magnetization divergence ∇Mz, for which we compare a continuous model with discrete micromagnetic simulations.
[1] S.-B. Choe et al., Science 304, 420 (2004). [2] S. Wintz et al., Appl. Phys. Lett. 98, 232511 (2011).

Keywords: magnetic vortex; biquadratic interlayer exchange coupling; multilayer; divergence

  • Poster
    19th international conference on magnetism (ICM 2012), 08.-13.07.2012, Busan, Korea

Permalink: https://www.hzdr.de/publications/Publ-16876