Analytical Solutions for ADS Experiments. Development and Application.


Analytical Solutions for ADS Experiments. Development and Application.

Glivici-Cotruta, V.; Merk, B.

Abstract

In recent years, the accelerator-driven subcritical reactors (ADSR or ADS) were proposed for the transmutation of the transuranic elements from spent nuclear fuel. ADS can be also used for the energy production from the abundant element thorium. An operation of ADS requires reliable online reactivity determination methods. The classical methods for reactivity calculation have demonstrated strong system dependence in the experimental campaigns (YALINA , MUSE). These methods are based on point kinetics equations. To overcome the problem in the analysis of the space-time behavior of the neutron flux in ADS, the solutions for the space and time dependent diffusion and P1 transport equations were developed analytically. The Green’s function method was applied. The results were compared with the experimental results for the YALINA-Booster facility. The analytical solutions are in a good agreement with the experimental ones. In this work the authors give an overview of the developed solutions and their application for the analysis of the ADS experiments.

Keywords: Accelerator-driven system; Green’s function; diffusion; P1 transport; YALINA-Booster

  • Contribution to proceedings
    International conference dedicated to the fiftieth anniversary of BFS critical facility, 28.02.-01.03.2012, Obninsk, Russia
    Proceedings of the International conference
  • Lecture (Conference)
    International conference dedicated to the fiftieth anniversary of BFS critical facility, 28.02.-01.03.2012, Obninsk, Russia

Permalink: https://www.hzdr.de/publications/Publ-16888