Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Eu3+ in NMR spectroscopy – a helpful tool in tracking binding sites

Kretzschmar, J.; Barkleit, A.; Brendler, V.

Abstract

Lanthanides have become a useful tool in NMR spectroscopy within the last 40 years. Due to their paramagnetic properties they can be utilized as probes to determine the binding sites of biologically or environmentally relevant organic molecules as they cause significant line broadenings and / or paramagnetic induced shifts [1-3].
Actual research deals with the interactions, thermodynamic and kinetic behaviour of actinides and biomolecules. Lanthanides can easily be used as inactive analogues for trivalent actinides in consequence of their similar chemistry.
Glutathione is a high concentrated intracellular reducing agent, playing a major role in detoxification processes. Important targets are electrophiles such as heavy metal ions. With its high natural abundance, different functional groups and reducing ability, this tripeptide provides outstanding characteristics for actinide complexation research and, furthermore by its small size it is well suited as a model molecule in NMR spectroscopy.
1H-NMR signals are shifted and broadened by the paramagnetic induced shift of the Eu3+ with their 4f6 electron configuration. These interactions between nuclear spins and electron unpaired spins exhibit a strong distance dependency. The closer the binding site, the bigger the shift of the signals.
From these findings, it can be derived that the carboxylate group of the glutamate residue is the most potential binding site at pH 2.9. According to the aqueous speciation, the glycine carboxylic acid group is only partially deprotonated and therefore less involved in complexation. The thiol group does not interact with the metal ion.

Acknowledgement: We thank Dr. Erica Brendler, Technische Universität Bergakademie Freiberg, for providing the possibility to acquire 2D-NMR spectra.

[1] C. C. Hinckley, J. Am. Chem. Soc. 1969, 91, 5160-5162.
[2] O. A. Gansow, M. R. Willcott, R. E. Lenkinski, J. Am. Chem. Soc. 1971, 93, 4295-4297.
[3] I. Bertini, C. Luchinat, G. Parigi, Solution NMR of paramagnetic molecules, Vol. 2, in: Current methods in inorganic chemistry, Elsevier, Amsterdam, 2001.

Keywords: Advanced Techniques in Actinide Spectroscopy (ATAS); Eu3+; glutathione; NMR spectroscopy

  • Vortrag (Konferenzbeitrag)
    International Workshop on Advanced Techniques in Actinide Spectroscopy (ATAS), 05.-07.11.2012, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-17505