Kelvin probe force microscopy for characterizing functionalized semiconductor surfaces for nano and biotechnologies


Kelvin probe force microscopy for characterizing functionalized semiconductor surfaces for nano and biotechnologies

Baumgart, C.; Habicht, S.; Feste, S.; Helm, M.; Müller, A.-D.; Schmidt, H.

Abstract

Kelvin probe force microscopy (KPFM) is one of the most promising non-contact electrical nanometrology technique to characterize functionalized semiconductor. We present its applicability to determine surface-near electrostatic forces in locally doped silicon structures. Those electrostatic forces may be used to position and control nano and biomaterials on doped semiconductor carriers. Furthermore, quantitative dopant profiling by means of KPFM measurements [1] is successfully demonstrated on a conventional static random access memory (SRAM) cell, on cross-sectionally prepared Si epilayers, and on arrays of horizontal Si nanowires [2] by applying a recently introduced new explanation of the measured KPFM signal. Additionally, the influence of local, carrier-depleted space charge regions and of the electric fields across them is discussed. It is explained how drift and diffusion of injected charge carriers in intrinsic electric fields influence the surface-near electrostatic forces [3]. Surface-near electrostatic forces may be enhanced above pn junctions and KPFM is successfully employed to locate pn junctions in doped silicon structures, e.g. along the B-doped and As-doped Si nanowires. [1] C. Baumgart, M. Helm, H. Schmidt, Phys. Rev. B, 80, 085305 (2009). [2] S. F. Feste, J. Knoch, S. Habicht, D. Buca, Q.-T. Zhao, S. Mantl, Solid-State Electronics, 53, 1257 (2009). [3] C. Baumgart, A.-D. Müller, F. Müller, and H. Schmidt, Phys. Stat. Sol. A, 208, 777 (2011) (editor’s choice).

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    E-MRS Fall Meeting 2012, 17.-21.09.2012, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-17818