Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Abiotic reductive immobilization of U6+ by biogenic mackinawite

Veeramani, H.; Scheinost, A. C.; Monsegue, N.; Qafoku, N. P.; Kukkadapu, R.; Newville, M.; Lanzirotti, A.; Pruden, A.; Murayama, M.; Hochella, M.F.

Abstract

During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

Keywords: abiotic reduction; uranium; mackinawite

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-17852