Fe-doped InN layers grown by molecular beam epitaxy


Fe-doped InN layers grown by molecular beam epitaxy

Wang, X.; Liu, S.; Ma, D.; Zheng, X.; Chen, G.; Xu, F.; Tang, N.; Shen, B.; Zhang, P.; Cao, X.; Wang, B.; Huang, S.; Chen, K.; Zhou, S.; Yoshikawa, A.

Abstract

Fe-doped InN have been grown by molecular-beam-epitaxy. It is found that Fe-doping leads to drastic increase of residual electron concentration, which is different from semi-insulating property of Fe-doped GaN. However, this heavy n-type doping can't be fully explained by Fe-concentration. Further analysis shows that more unintentionally-doped impurities such as hydrogen and oxygen are incorporated with increasing [Fe] and surface is degraded with high density pits, which probably are the main reasons for electron generation and mobility reduction. Photoluminescence of InN is gradually quenched by Fe-doping. It shows that Fe-doping is one of good choices to control electron density in InN.

Keywords: Fe-doping; InN; MBE

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-17870