III-V compound semiconductors integrated with silicon for functional optoelectronic devices


III-V compound semiconductors integrated with silicon for functional optoelectronic devices

Prucnal, S.; Facsko, S.; Mücklich, A.; Zhou, S. Q.; Ou, X.; Liedke, M. O.; Turek, M.; Zuk, J.; Skorupa, W.

Abstract

The downscaling and stressor technology of Si based devices is extending the performance of the silicon channel to its limits. The further downsizing of CMOS devices below 16 nm will need to solve some of the practical limits caused by one of the integration issues, such as chip performance, cost of development and production, power dissipation, reliability, etc. One solution for the performance progress which can overcome the downsizing limit in silicon technology is the integration of different functional optoelectronic elements within one chip.
We propose to realize a compact, CMOS compatible and fully integrated solution for the integration of III-V compound semiconductors with silicon technology for optoelectronic applications. The III-V nanostructured semiconductors are synthesized in silicon using the combined ion beam implantation and millisecond flash lamp annealing (FLA) techniques [1]. The FLA appears to be the most suitable one for this purpose. The energy budget introduced to the sample during FLA is sufficient to recrystallize silicon amorphized during the ion implantation and to form III-V nanocrystals (NCs). In this paper we will present investigations of the microstructural, optical and electrical properties of III-V quantum dots (InAs, GaAs and InP) formed in silicon. Conventional selective etching was used to form the n-III-V/p-Si heterojunction. The current-voltage measurement confirms the heterojunction diode formation between n-type III-V quantum dots and p-type Si. The main advantage of our method is its integration with large-scale silicon technology, which also allows applying it for Si-based photronic devices.
[1] S. Prucnal, S. Facsko, Ch. Baumgart, et al. NanoLett. 11, 2814 (2011).

Keywords: Ion implantation; FLA; quantum dots; silicon

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    Workshop Ionenstrahlphysik 2012 Universität Augsburg, 10.-11.07.2012, Augsburg, Germany

Permalink: https://www.hzdr.de/publications/Publ-18106