Flash lamp annealing of Tungsten surfaces marks a new way to optimized slow positron yields


Flash lamp annealing of Tungsten surfaces marks a new way to optimized slow positron yields

Anwand, W.; Butterling, M.; Johnson, J. M.; Reuther, H.; Wagner, A.; Skorupa, W.; Brauer, G.

Abstract

Tungsten is often used as a positron moderator in mono-energetic positron beams [1] with 22Na positron sources. Therefore, mono-crystalline W foils with a thickness of about 2 μm are commonly used. The efficiency of such tungsten moderators strongly depends on the heat treatment of the tungsten foils. Currently, the annealing of such thin foils is mostly done at temperatures of about 2000 oC under vacuum conditions with a considerable difficulty. For this reason, a new method was sought to quickly anneal W foils to produce manageable, low-cost moderators with a high efficiency suitable for mono-energetic positron beams.
Flash lamp annealing (FLA) offers a chance for the optimization of the moderator properties. With FLA, the surface of a W foil can be heated above the melting point (3422ºC) in 1 to 3 ms without melting the whole volume. The heat treatment was carried out in an Ar flow. In this way, a surface cleaning and a considerably longer positron diffusion length could be reached.
Conventional poly-crystalline W foils with a thickness of 9 μm + 25% and heat treated by FLA were characterized by Auger electron spectroscopy, scanning electron microscopy and slow positron implantation spectroscopy and then tested as positron moderators. First promising results obtained with these W foils will be presented and it will be shown that this technique is applicable to tungsten meshes too.
References
[1] P.G. Coleman, Positron Beams and their applications, World Scientific Publishing, Singapore, 2000

Keywords: Tungsten foils; positron moderation; Flash Lamp Annealing

Beteiligte Forschungsanlagen

  • P-ELBE

Permalink: https://www.hzdr.de/publications/Publ-18295