Ion implantation techniques for silicon based photovoltaics and light emitters


Ion implantation techniques for silicon based photovoltaics and light emitters

Lipp Bregolin, F.; Sias, U. S.; Behar, M.; Prucnal, S.; Rebohle, L.; Skorupa, W.

Abstract

The broad adoption of ecologically friendly and cost-effective renewable energy sources and the continuous advances of the information technology industry are two of the most relevant topics in the current needs of our modern society.
The ion implantation techniques are very powerful tools and will continue to play an important part in the achievement of such goals.
In the present work, two main issues will be addressed. The first one covers the continuous search for efficient and durable silicon based light emitters for fully integrated silicon photonics. The second is the use of new processing techniques for solar cell technologies, where cost reduction is the everlasting ambition.
The light emitters made by hot ion implantation show strong enhancement of the photoluminescence intensities in comparison with the ones implanted at room temperature. In the case of photovoltaics, the plasma immersion ion implantation combined with millisecond flash lamp annealing of Solar-grade mc-Si are used for texturization and dopant activation. This approach shows very encouraging results for the fabrication of the emitter at a low thermal budget, decreasing the overall production costs.
By correlating the results of a number of experimental techniques, a qualitative explanation for the influence of the ion implantation and further fabrication parameters on the characteristics of each system is presented.

Keywords: ion implantation; light emitter; photoluminescence; electroluminescence; silicon photonics; photovoltaics; solar cells

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Eingeladener Vortrag (Konferenzbeitrag)
    ION 2012 - Ion implantation and other applications of ions and electrons, 25.-28.06.2012, Kazimierz Dolny, Poland,, Polska

Permalink: https://www.hzdr.de/publications/Publ-18301