Si nanowire networks for 3rd generation solar cells


Si nanowire networks for 3rd generation solar cells

Heinig, K.-H.; Schmidt, B.; Mücklich, A.; Liedke, B.; Kelling, J.; Friedrich, D.; Hauschild, D.; Stegemann, K.-H.; Bulutay, C.; Keles, U.; Aydinli, A.

Abstract

Large-scale self-structuring by spinodal decomposition of metastable SiO is a very promising synthesis process of novel nanostructured Si absorbers for 3rd generation solar cells [1]. The SiO layers have been produced by different techniques, sputtering, CVD and e-beam evaporation. Spinodal decomposition has been activated by Rapid Thermal Processing (RTP) and laser annealing. When the volume fraction of Si exceeds ~30% after the phase separation SiOx-->0.5SiO2+(1-0.5x)Si, then Si forms a nanowire network. Energy-Filtered Transmission Electron Microscopy (EFTEM) studies show that nanowires have diameters of a few nanometers with a narrow distribution. This is in excellent agreement with large-scale simulations based on bit-coded kinetic Monte-Carlo accelerated by Massive Parallel Programming on NVIDIA graphic cards using a CUDA code. There is a considerable Si band gap widening due to quantum confinement in the nanowire network. As the wire diameter coarsens with time of heat treatment like d~t0.33, the band gap of the Si nanosponge can be optimized for solar cell application. Using an atomistic pseudopotential method, the band gaps of sponge have been studied. Finally it will be shown that up-scaling of the nanotechnology described above to large-scale PV cell production is under way by industrial partners.

Keywords: nanocomposite; silicon; silica; sponge; sputter deposition; solar cell; band gap; atomistic simulations

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Eingeladener Vortrag (Konferenzbeitrag)
    4th International Conference on Nanostructure Selfassembly (NANOSEA2012), 25.-29.06.2012, Margherita di Pula, Sardinia/Italy

Permalink: https://www.hzdr.de/publications/Publ-18331