Microbial influence on the migration behaviour of radionuclides


Microbial influence on the migration behaviour of radionuclides

Krawczyk-Bärsch, E.

Abstract

In an underground rock characterization facility, the ONKALO tunnel in Finland, massive 5–10-mm thick biofilms were observed attached to tunnel walls where groundwater was seeping from bedrock fractures at a depth of 70 m. In laboratory experiments performed in a flow cell with detached biofilms to study the effect of uranium on the biofilm, uranium was added to the circulating groundwater obtained from the fracture feeding the biofilm. The final uranium concentration was adjusted to 4.25×10–5 M. EF-TEM studies indicated that uranium in the biofilm was immobilized intracellularly in microorganisms by the formation of metabolically mediated uranyl phosphate, similar to needle-shaped Autunite (Ca[UO2]2[PO4]2•2-6 H2O) or meta-Autunite (Ca[UO2]2[PO4]2•10-12H2O). At the Äspö HRL (Sweden) Gallionella ferruginea dominated biofilms associated with bacteriogenic iron oxides (BIOS) and groundwater were sampled from an in situ continuous flow cell. In laboratory sorption experiments UO2(ClO4)2 and NpO2(ClO4) were added to the BIOS biofilms in groundwater under aerobic conditions adjusting a final U(VI) concentration of 1.9×10-5 M. U(VI) and 3.27×10-5 M Np(V). The results showed a substantial decrease of uranium and neptunium in the groundwater of approximately 85 % and 95 %, respectively. Thermodynamic calculation of the theoretical predominant field of uranium species was performed using the analytical data of the uranium-contaminated groundwater. Under the given pH and Eh the formation of the aqueous uranium carbonate species Ca2UO2(CO3)3(aq) is predicted due to the high concentration of carbonate in the groundwater. In the BIOS biofilm the ferrous iron-oxidizing and stalk-forming bacterium Gallionella ferruginea is dominating the sorption process. The stalk represents an organic surface upon which Fe oxyhydroxides can precipitate. Under the given pH conditions the uptake of U and Np depends predominantly on the high amount of ferrihydrite precipitated onto the stalks. Conclusively, the combination of this biological material and iron oxides creates an abundant surface area for adsorption of radionuclides.

Keywords: biofilm; U(VI); Np(V); Äspö; ONKALO; sorption

  • Vortrag (Konferenzbeitrag)
    Coordination Meeting at Äspö, 26.04.2013, Äspö, Sweden

Permalink: https://www.hzdr.de/publications/Publ-18939