GaPN dilute nitride fabricated by ion-implantation and pulsed laser melting


GaPN dilute nitride fabricated by ion-implantation and pulsed laser melting

Gao, K.; Prucnal, S.; Baehtz, C.; Skorupa, W.; Helm, M.; Zhou, S.

Abstract

It is challenging to achieve luminescence from GaP due to its indirect bandgap. This restricts the application of GaP for photonic devices.
In this contribution we present the broad-band luminescence from a multi-energy-level structure based on GaP. Such optically active layer is performed by nitrogen-implantation into commercial (100) GaP wafers followed by nanosecond-range pulsed laser melting. The microstructural and optical properties of the fabricated GaPN/GaP samples were investigated by means of X-ray diffraction (XRD), micro-Raman spectroscopy, photoluminescence (PL) and photoreflectance (PR) spectroscopy. The XRD results indicate that the pulsed laser treatment leads to the recrystallization of the implantation-induced amorphous layer and the incorporation of nitrogen into the GaP lattice. The PL spectra confirm directly the formation of optically active diluted nitride layer. Moreover, the obtained multi-band PL and micro-Raman spectra suggest a local enrichment of nitrogen in the implanted layer, i.e., the formation of GaN/GaN1-xPx crystallites, which are embedded in a porous GaP1-yNy/GaP layer. Such system exhibits a wide range of strong luminescence and absorption from 380 nm to 700 nm. The structure has promising prospects in photovoltaic and white-light-emitting applications.

Keywords: GaPN; ion-implantation; pulsed laser melting

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    E-MRS 2013 Fall Meeting, 16.-20.09.2013, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-19342