Field-induced magnetic ordering and single-ion anisotropy in the quasi-one-dimensional Haldane chain compound SrNi2V2O8: A single-crystal investigation


Field-induced magnetic ordering and single-ion anisotropy in the quasi-one-dimensional Haldane chain compound SrNi2V2O8: A single-crystal investigation

Bera, A. K.; Lake, B.; Islam, A. T. M. N.; Klemke, B.; Faulhaber, E.; Law, J. M.

Abstract

Field-induced magnetic ordering in the Haldane chain compound SrNi2V2O8 and the effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low-temperature heat-capacity studies confirm a nonmagnetic spin-singlet ground state and a gap between the singlet ground state and triplet excited states. The intrachain exchange interaction is estimated to be J ∼ 8.9 ± 0.1meV. Splitting of the dispersions into two modeswithminimum energies 1.57 and 2.58 meV confirms the existence of single-ion anisotropy D(Sz)2. The value of D is estimated to be −0.51 ± 0.01 meV and the easy axis is found to be along the crystallographic c axis. Field-induced magnetic ordering has been found with two critical fields (μ0 H c ⊥c = 12.0 ± 0.2 T and μ0 H c IIc = 20.8 ± 0.5 T at 4.2 K). Field-induced three-dimensional magnetic ordering above the critical fields is evident from the heat-capacity, susceptibility, and high-field magnetization study. The phase diagram in the H-T plane has been obtained from the high-field magnetization. The observed results are discussed in the light of theoretical predictions as well as earlier experimental reports on Haldane chain compounds.

Beteiligte Forschungsanlagen

  • Hochfeld-Magnetlabor (HLD)

Permalink: https://www.hzdr.de/publications/Publ-19385