The giant Shakhdara migmatitic gneiss dome, Pamir, India–Asia collision zone, I: Geometry and kinematics


The giant Shakhdara migmatitic gneiss dome, Pamir, India–Asia collision zone, I: Geometry and kinematics

Stübner, K.; Ratschbacher, L.; Rutte, D.; Stanek, K.; Minaev, V.; Wiesinger, M.; Gloaguen, R.; Bahram, I.; Gadoev, M.; Gordon, S. M.; Hacker, B. R.; Hofmann, J.; Kanaev, E.; Oimahmadoc, I.; Rajabov, N.

Abstract

Cenozoic gneiss domes comprise one third of the surface exposure of the Pamir and provide a window into the deep crustal processes of the India-Asia collision. The largest of these are the doubly vergent, composite Shakhdara-Alichur domes of the southwestern Pamir, Tajikistan, and Afghanistan; they are separated by a low-strain horst. Top-to-SSE, noncoaxial pervasive flow over the up to 4 km thick South Pamir shear zone exhumed crust from 30–40 km depth in the ~250 × 80 km Shakhdara dome; the top-to-NNE Alichur shear zone exposed upper crustal rocks in the ~125 × 25 km Alichur dome. The Gunt shear zone bounds the Shakhdara dome in the north and records alternations of normal shear and dextral transpression; it contributed little to bulk exhumation. Footwall exhumation along two low-angle, normal-sense detachments resulted in up to 90 km syn-orogenic ~N-S extension. Extension in the southwestern Pamir opposes shortening in a fold-thrust belt north of the domes and in particular in the Tajik depression, where an evaporitic décollement facilitated upper crustal shortening. Gravitational collapse of the Pamir-plateau margin drove core-complex formation in the southwestern Pamir and shortening of the weak foreland adjacent to the plateau. Overall, this geometry defines a “vertical extrusion” scenario, comprising frontal and basal underthrusting and thickening, and hanging gravitationally driven normal shear. In contrast to the Himalayan vertical extrusion scenario, erosion in the Pamir was minor, preserving most of the extruded deep crust, including the top of the South Pamir shear zone at peak elevations throughout the dome.

Keywords: Pamir; gneiss dome; synorogenic extension; low-angle detachment

Permalink: https://www.hzdr.de/publications/Publ-19618