Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

In-situ spectroscopic characterization of Np(V) sorption complexes at manganese and iron oxide surfaces

Müller, K.; Rossberg, A.; Simon, B.; Berger, J.

Abstract

Neptunium (Np) is one of the most important components of nuclear waste to consider for the long-term safety assessment of nuclear waste repositories, due to the increasing enrichment, the long half-life and the high toxicity of Np-237. Hence, great attention is attracted to its geochemistry [1]. Among the various geochemical reactions, the molecular processes occurring at the solid-water interface, e.g. sorption onto mineral phases, surface precipitation, and colloid formation strongly affect the migration behavior of the radioactive contaminant in the environment [2]. Thus, various components of geological materials, such as manganese and iron oxides and hydroxides play an important role in regulating the mobility of actinides in aquifers, due to their widespread environmental presence, high sorption capacity and tendency to form coatings on mineral surfaces [3]. In recent years, the sorption behavior of Np(V), the most relevant oxidation state under ambient conditions, onto iron oxides was mainly studied by macroscopic experiments [4]. Manganese oxides were rarely investigated [5]. For a better understanding of the molecular events occurring at the mineral’s surfaces, ATR FT-IR spectroscopy is a useful tool for the in-situ identification of surface species [5]. In addition, time-resolved measurements provide kinetic information on the surface reactions. Complementary information on molecule structure and atomic environment can be elucidated from EXAFS spectroscopy.

In this work, Np(V) sorption on the oxyhydroxides of Fe and Mn is investigated comprehensively by combining in-situ ATR FT-IR and EXAFS spectroscopy under a variety of environmentally relevant sorption conditions. As an example, upon sorption of micromolar Np(V) on Fe2O3, a band observed at 789 cm−1 is assigned to the antisymmetric stretching vibrational mode (ν3) of the neptunyl ion (Fig.1). The IR spectrum obtained at equal conditions in an aqueous solution shows the absorption of ν3(NpVO2) at 818 cm−1 [6]. The red shift of ν3 to 789 cm−1 upon sorption can be assigned to an inner-sphere sorption complex. Kinetic experiments have shown that only one sorption complex was formed independent from Np(V) loading. Furthermore, no impact of ionic strength (1- 10−4 M NaCl) and pH (≤ 10) on the sorbed species was found. By EXAFS structural analysis of batch samples the surface complex was further characterized being a binary edge-sharing Np(V) sorption species (Fig.2). From a comparison of Np(V) surface complexation on different mineral oxides of iron, manganese, silicon and titanium a very similar sorption behavior was elucidated.

[1] Kaszuba, J.P. et al. (1999) Environ. Sci. Technol. 33, 4427-4433.
[2] O'Day, P.A. (1999) Rev. Geophys. 37, 249-274.
[3] Tochiyama, O. et al. (1996) Radiochim. Acta 73, 191-198.
[4] Li, D. et al. (2012) J. Hazard. Mater. 243, 1-18.
[5] Wilk, P. A. et al. (2005) Environ. Sci. Technol. 39, 2608-2615.
[6] Müller, K. et al. (2009) Environ. Sci. Techn. 43, 7665-7670.
[7] Blake, R. L.et al. (1966) Am. Mineral. 51, 123-129

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Poster
    International workshop on Advanced Techniques in Actinide Spectroscopy (ATAS 2014), 03.-07.11.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20597