Experimental design of optical free-electron lasers in the Traveling-Wave Thomson-Scattering geometry


Experimental design of optical free-electron lasers in the Traveling-Wave Thomson-Scattering geometry

Steiniger, K.; Bussmann, M.; Debus, A.; Irman, A.; Jochmann, A.; Pausch, R.; Röser, F.; Schramm, U.; Sauerbrey, R.

Abstract

Traveling-Wave Thomson-Scattering (TWTS) realizes optical free-electron lasers (OFEL) from the extreme ultraviolet to the X-ray range with existing electron accelerators and high-power laser systems. In TWTS ultrashort laser pulses and relativistic electron bunches are utilized in a side-scattering geometry where laser pulse and electron bunch direction of motion enclose an interaction angle. The laser electric field thereby is the undulator field in which the electrons oscillate and emit radiation during the interaction. When the electrons traverse the laser beam cross-section, TWTS provides continuous overlap of electron bunch and laser pulse by employing a laser pulse-front tilt which compensates the spatial separation of electrons and laser at the beginning and end of the interaction originating from their different propagation directions. The combination of laser pulse-front tilt and side-scattering in TWTS enables interaction lengths long enough to induce microbunching of the electron beam leading to coherent amplification of the emitted radiation and the realization of TWTS OFELs.
We present the scaling laws for the electron beam and laser pulse requirements to operate TWTS OFELs and show with example scenarios that TWTS OFELs can be realized with existing radio-frequency accelerated electrons such as ELBE at HZDR as well as laser-wakefield accelerated electrons. We detail the necessary equipment in a TWTS OFEL experiment and discuss how current experimental limitations affect the design of TWTS OFEL setups.

Keywords: Traveling-wave; Thomson scattering; X-ray; FEL

  • Vortrag (Konferenzbeitrag)
    DPG Frühjahrstagung Wuppertal 2015, 09.-13.03.2015, Wuppertal, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21975