Single crystal growth, structural characteristics and magnetic properties of chromium substituted M-type ferrites


Single crystal growth, structural characteristics and magnetic properties of chromium substituted M-type ferrites

Shlyk, L.; Vinnik, D. A.; Zherebtsov, D. A.; Hu, Z.; Kuo, C.-Y.; Chang, C.-F.; Lin, H.-J.; Yang, L.-Y.; Semisalova, A. S.; Perov, N. S.; Langer, T.; Pöttgeng, R.; Nemrava, S.; Niewa, R.

Abstract

Two different types of fluxes, namely sodium based and chloride based fluxes were used to grow Cr substituted barium and strontium hexaferrite ferrite crystals, (Sr,Ba)Fe12 − xCrxO19 at comparatively low temperatures of about 1300 °C. The sodium based flux led to growth of larger crystals up to 5 mm, but with only minor Cr contents x ≤ 0.07. From the chloride based flux the obtained Cr contents are significantly higher with x = 5.7 (Sr) and x = 3.4 (Ba), however, crystals reach only sizes in the sub-mm range. X-ray absorption spectroscopy data support exclusively isovalent substitution of Fe3+ by Cr3+ even for very low Cr contents. 57Fe Mößbauer spectroscopy reveals Cr to preferentially occupy the six-fold by oxygen coordinated site at 12k and, to a lower degree, 2a and 4f2 in space group P63/mmc. All characteristic magnetic properties drop upon Cr substitution, e. g., the Curie temperature from 728 K for pure BaFe12O19 to 465 K for BaFe8.6Cr3.4O19, the saturation magnetization from 71 emu/g to 29.7 emu/g and the coercive field from 363 Oe to 45 Oe.

Keywords: Hexaferrites; Chromium; Mößbauer; Magnetism

Permalink: https://www.hzdr.de/publications/Publ-23013