Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters


Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

Al-Motasem, A. T.; Mai, N. T.; Choi, S. T.; Posselt, M.

Abstract

The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111)[-110], were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimizationwas performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

Keywords: fracture; Molecular Dynamics; Monte Carlo; nanoclusters; deformation twinning; dislocation

Permalink: https://www.hzdr.de/publications/Publ-23336