Geoscientific process monitoring with positron emission tomography (GeoPET)


Geoscientific process monitoring with positron emission tomography (GeoPET)

Kulenkampff, J.; Gründig, M.; Zakhnini, A.; Lippmann-Pipke, J.

Abstract

Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging with µCT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatiotemporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution in the order of 1 mm.
We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to the high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values.
Examples of process monitoring with GeoPET of advection and diffusion processes are illustrating the procedure and the experimental conditions, as well as the benefits and limits of the method.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-23344