A Local Superlens


A Local Superlens

Kehr, S. C.; Mcquaid, R. G. P.; Ortmann, L.; Kämpfe, T.; Kuschewski, F.; Lang, D.; Döring, J.; Gregg, J. M.; Eng, L. M.

Abstract

Superlenses enable near-field imaging beyond the optical diffraction limit. However, their widespread implementation in optical imaging technology so far has been limited by large-scale fabrication, fixed lens position, and specific object materials. Here we demonstrate that a dielectric lamella of subwavelength size in all three spatial dimensions behaves as a compact superlens that operates at infrared wavelengths and can be positioned to image any local microscopic area of interest on the sample. In particular, the lamella superlens may be placed in contact with any type of object and therefore enables examination of hard-to-scan samples, for example, with high topography or in liquids, without altering the specimen design. This lamella-based local superlens design is directly applicable to subwavelength light-based technology, such as integrated optics.

Keywords: superlens; subwavelength imaging; near-field microscopy; barium titanate; mid-infrared; free-electron laser

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-23354