Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

2 Publikationen

Analysis of granular material flow characteristics during silo discharging process using ultrafast X-ray CT

Waktola, S.; Babout, L.; Grudzień, K.; Bieberle, M.; Barthel, F.; Hampel, U.

Abstract

In various industrial products, granular materials are required to flow under gravity in different kinds of silo shapes and through openings in horizontal bottoms. There are a number of interrelated parameters, which affect the flow, such as internal friction, bulk and packing density, hopper geometry, material type and so on. Silo gravitational flow has been investigated for many years; however, most published research findings are concerned on the numerical modeling of flow or usually the results are obtained by using equipment with some technical limitations. Due to the lack of possibility to visualize center of silo (as in case of CCD camera systems) or conditions of scanning speed and slightly low resolution of conventional X-ray CT and ECT systems respectively, so far, it was not able to conduct effective analysis of flow characteristics (MICHALOWSKI et al., 1984, CHOI et al., 2005, WILDE et al., 2010 and BABOUT et al., 2013). More in-depth investigation and analysis of silo flow behaviors than being conducting till now, will allow better understand the flow process and additionally to conduct comparison between real measurements and simulation results.
Using the ultra-fast electron beam X-ray CT scanner (ROFEX) from Helmholtz-Zentrum Dresden-Rossendorf, which is a very high temporal resolution system, it is possible to investigate structural changes within a granular material during the flow process. Since the images, which were scanned using this technology have high spatial and temporal resolution, specified particle movements can be tracked and local velocities can be determined. Thus, the dynamic flow behavior of the material during the discharging process can be investigated.
This study gives a new insight into the gravitational flow during silo discharging process inside a cylindrical silo model. The granular material is a mixture of sand and tracer particles. The properties of tracer particles are characterized by higher absorption of X-ray radiation and different shape than sand particles, which allows observing motion of tracking particles (GRUDZIEN et al., 2013). Such type of experiments (using ultra-fast X-ray system and particle tracking methods) were conducted for different construction of silo models, which allows evaluating the radial and axial local velocity of granular materials.

Keywords: granular material; silo discharging; ultrafast X-ray CT

Beteiligte Forschungsanlagen

  • TOPFLOW-Anlage
  • Beitrag zu Proceedings
    WCIPT8 - 8th World Congress on Industrial Process Tomography, 26.-29.09.2016, Iguassu Falls, Brazil
    Proceedings of WCIPT8
  • Poster
    WCIPT8 - 8th World Congress on Industrial Process Tomography, 26.-29.09.2016, Iguassu Falls, Brazil

Permalink: https://www.hzdr.de/publications/Publ-23367