New spectroscopic insights into the uranyl-acetate system by TRLFS and UV-vis


New spectroscopic insights into the uranyl-acetate system by TRLFS and UV-vis

Brinkmann, H.; Moll, H.; Arnold, T.; Stumpf, T.

Abstract

The interaction of acetic acid as the smallest carboxylic acid with a side chain with uranium (VI) is of importance in two respects: firstly, it occurs often as a degradation product of organic components of radioactive waste (e.g. cellulose, bitumen, PVC), and secondly it can serve as model for more complex organic compounds like humic acids. Three complexes can be formed in aqueous solutions: UO2(AcO)n2-n, where n is 1,2, or 3. These complexes are well characterized under various experimental conditions in terms of stability and structure, reported in a number of publications. Recently published articles focused also on spectroscopic properties of uranium (VI) acetate complexes using on the one hand time-resolved laser-induced fluorescence spectroscopy (TRLFS) and on the other hand UV-vis spectroscopy. The uranium concentrations used (between 0.1 and 0.2 M) are comparatively high. However, both works revealed only data for the 1:1 complex UO2(AcO)+. Therefore, the aim of this study was to provide spectroscopic data for all three UO2(AcO)n2-n complexes to fill in the gaps in the uranium-acetate system.
Both the TRLFS and UV-vis experiments were performed with solutions containing only 50 µM uranium (VI). The parameters of the test series were varied in a way that the speciation changes from the free uranyl-ion, over the 1:1 and 1:2, to the 1:3 complex UO2(AcO)3-. Thereby the pH was fixed and the acetate concentration was varied or vice versa. In contrast to conventional UV-vis set ups, we used a Liquid Waveguide Capillary Cell with a path length of 250 cm to obtain spectra of high quality at this very low uranium concentration. The absorption spectra were evaluated on the basis of factor analysis and it was possible to calculate reproducible single component spectra for all the uranyl-acetate species (see Fig. 1). The TRLFS experiments at 25°C revealed the known quenching of the 1:1 complex (see Fig. 2 left) but also at pH > 3 a strong increase in intensity, band shifts, and a rise of a new band at 461 nm (see Fig. 2). These findings allow the assumption that the 1:2 and 1:3 complexes are luminescent. To examine whether the 1:1 complex is non luminescent TRLFS measurements at 152 K to avoid dynamic quenching of the acetate ion will be carried out.
Our approach of using a combination of UV-vis, TRLFS, and cryo-TRLFS allows the spectroscopic characterization of all three uranyl-acetate complexes including the determination of the corresponding stability constants.

Keywords: Uranium; Acetate; TRLFS; UV-vis

  • Vortrag (Konferenzbeitrag)
    10th International Biometals Symposium, 10.-15.07.2016, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23368