State-of-the-art quantitative mineral phase determination of resource materials by XRD


State-of-the-art quantitative mineral phase determination of resource materials by XRD

Möckel, R.; Kleeberg, R.; Luhmer, R.

Abstract

Quantitative powder X-ray diffraction (PXRD) analysis is a traditional and powerful tool widely used in numerous fields like industrial product control, material sciences, and par-ticularly in geosciences. Resource materials and their comprehensive characterization play an important role in the recent developments focused on efficient and sustainable usage of valuable materials from both primary and secondary sources. PXRD offers the opportunity to quantify crystalline materials from a large part of the value chain, from raw materials (ores) to the characterization of concentrates and residues during processing and – closing the loop – of recycling products. Although several approaches are available, nowadays Rietveld analysis is widely used to quantify mineral phases. This method is based on crystal structure and peak profile models, whose parameters are refined by least-squares algorithms to match the measured raw diffraction pattern. The software packages BGMN and Profex [1] are especially suitable for Rietveld phase analysis, as their convolution-based peak shape models together with a structure interpreter language enable the formulation of structure models even for complex disordered structures like clay minerals. In this way, standardless mineral quantification is possible even critical matrices like iron ores or clays, what is hard to perform with any (electron) optically or chemically based method. The successful participation in several round robins (e.g. the Reynolds Cup) as well as extensive in-house testing by synthetic reference mixtures, adjusted to match real-life samples, proved the accuracy and potential of this approach. Although the limits of detection of PXRD are generally considered to be high compared to spatially resolved methods like microscopy, new instrumental developments like multistrip detectors in combination with improved peak profile modeling enable a significant improvement of this critical parameter. Thus, in a case study on processing residues of a cassiterite (SnO2) bearing Greisen deposit limits of determination in the magnitude of 0.2 mass% were reached and verified by geochemical methods.
Literature:
[1] Doebelin, N., Kleeberg, R., Journal of Applied Crystallography 2015, 48, 1573-1580.

Keywords: keine

  • Eingeladener Vortrag (Konferenzbeitrag)
    analytica conference 2016, 10.-13.05.2016, München, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23372