Tuning the structure and crystal habit of mesocrystals using magnetic fields


Tuning the structure and crystal habit of mesocrystals using magnetic fields

Wetterskog, E.; Klapper, A.; Disch, S.; Josten, E.; Hermann, R.; Rücker, U.; Brückel, T.; Bergström, L.; Alvarez, G.-S.

Abstract

A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest of exploiting collective material properties for potential applications. In this work, we produce evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape, and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enables structural determination of e.g. multi-domain mesocrystals with complex crystal habits, and the quantification of interparticle distances with sub-nm precision. We find a lower size limit for crystallization in the absence of a magnetic field. Mesocrystals of small nanocubes (l = 8.6 – 12.6 nm) are isostructural with a body centered tetragonal (bct) lattice whereas mesocrystals assembly of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size, shape, and the applied magnetic field strength. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.

Keywords: iron oxide; nanoparticles; magnetic field; assembly; cubes; GISAXS; mesocrystal; superstructure; normal field instability

Permalink: https://www.hzdr.de/publications/Publ-23414