Thallium dispersal and contamination in surface sediments from South China and its source identification


Thallium dispersal and contamination in surface sediments from South China and its source identification

Liu, J.; Wang, J.; Chen, Y.; Shen, C.-C.; Jiang, X.; Xi, X.; Chen, D.; Lippold, H.; Wang, C.

Abstract

Thallium (Tl) is a non-essential element in humans, and it is considered to be highly toxic. In this study, the contents, sources, and dispersal of Tl were investigated in surface sediments from a riverine system (the western Pearl River Basin, China), whose catchment has been contaminated by mining and roasting of Tl-bearing pyrite ores. The isotopic composition of Pb and total contents of Tl and other relevant metals (Pb, Zn, Cd, Co, and Ni) were measured in the pyrite ores, mining and roasting wastes, and the river sediments. Widespread contamination of Tl was observed in the sediments across the river, with the highest concentration of Tl (17.3 mg/kg) measured 4 km downstream from the pyrite industrial site. Application of a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme in representative sediments unveiled that 60 - 90% of Tl and Pb were present in the residual fraction of the sediments. The sediments contained generally lower 206Pb/207Pb and higher 208Pb/206Pb ratios compared with the natural Pb isotope signature (1.2008 and 2.0766 for 206Pb/207Pb and 208Pb/206Pb, respectively). These results suggested that a significant fraction of non-indigenous Pb could be attributed to the mining and roasting activities of pyrite ores, with low 206Pb/207Pb (1.1539) and high 208Pb/206Pb (2.1263). Results also showed that approximately 6 - 88% of Tl contamination in the sediments originated from the pyrite mining and roasting activities. This study highlights that Pb isotopic compositions could be used for quantitatively fingerprinting the sources of Tl contamination in sediments.

Keywords: Tl contamination; Pb isotope; pyrite; binary model

Permalink: https://www.hzdr.de/publications/Publ-23418