Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider


Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

Vovchenko, V.; Karpenko, I. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stöcker, H.

Abstract

Partonic matter produced at the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, but quarks and antiquarks are produced at later times.
The dynamical evolution of this chemically nonequilibrium system is described by the ideal (2+1)–dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state is taken as a linear interpolation of the lattice data for the pure gluonic matter and the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the LHC energy. The results are obtained assuming different equilibration times, including the case when the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the invariant mass spectra of dileptons, but a rather modest suppression of the pT -distributions of direct photons. It is demonstrated that a noticeable enhancements of photon and dilepton elliptic flows might be a good signature of the pure glue initial state.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-23437