Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Liquid Metal Ion Source driven High Current Ion Beam Injector

Laufer, P.; Bock, D.; Pilz, W.; Bischoff, L.; Tajmar, M.

Abstract

The capability of Liquid Metal (Alloy) Ion Sources (LMAIS) to emit a broad variety of ions from nearly the half of the periodic table including molecular ions or small clusters, consisting of a few atoms and different charge stages render them unique for special applications. LMAIS are characterized by a high brightness of about 1e6 A/cm² sr, low energy spread of some eV and a compact design which prefer them for focused ion beam (FIB) systems [1] or field emission electric propulsion (FEEP) thrusters in space technology [2].
The main attention is dedicated to the emission of heavy metallic polyatomic ions – a very special of LMAIS. With Bi or Au di- and trimer ions in the energy range of some 10 keV regular self-organized hexagonal dot structures were obtained after room temperature irradiation of Ge at normal incidence using a FIB instrument. The patterning is induced by the enormous energy deposition by the heavy projectiles but due to the low available currents restricted to only small areas [3, 4]. Consequently, an ion injector based on high current LMAIS is the aim of this work to process larger areas adaptable on single-end ion beam systems. Different types of field emitters were tested for a high permanent ion current of much more than 100 µA.
Among classical needle emitters, particularly the application of porous needles from Tungsten and Rhenium and Tantalum capillaries with a 50 µm inner diameter showed an excellent and stable emission behavior. Source materials like Ga for tests, Gold (from Au82Si18 alloy), Lead and Bismuth (Bi or Ga38Bi62 alloy) were investigated. In the developed injector a nearly parallel ion beam of about 2 mm diameter can be obtained by means of an asymmetric ion-optical Einzel lens. Furthermore a mass separation system (Wien filter) selects the desired ions while a quadrupole is used for beam adjustment and astigmatism correction. High cluster ion currents enable the formation of various nanostructures or even smooth surfaces over an area in cm²-range depending on ion species, energy, fluence and angle of incidence. The LMAIS characterization and the performance of the ion beam module for certain experiments will be presented and discussed.

[1] L. Bischoff: “Alloy liquid metal ion sources and their application in mass separated focused ion beams”, Ultramicroscopy 103 (2005), 59. DOI:10.1016/j.ultramic.2004.11.020
[2] M. Tajmar and B. Jang: “New materials and processes for field emission ion and electron emitters”, CEAS Space J. 4 (2013), 47. DOI: 10.1007/s12567-013-0031-z
[3] L. Bischoff, K.-H. Heinig, B. Schmidt, S. Facsko and W. Pilz: “Self-organization of Ge nanopattern under erosion with heavy Bi monomer and cluster ions”, Nucl. Instr. and Meth. B 272 (2012), 198. DOI: 10.1016/j.nimb.2011.01.064
[4] R. Boettger, L. Bischoff, K.-H. Heinig, W. Pilz, and B. Schmidt: “From sponge to dot arrays on (100) Ge by increasing the energy of ion impacts” J. Vac. Sci. Technol. B 30 (2012), 06FFF12. DOI: 10.1116/1.4767269

Keywords: Liquid Metal (Alloy) Ion Sources; polyatomic ions; nanostructures

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    1st International Conference on Helium Ion Microscopy and Emerging Focused Ion Beam Technologies (HEFIB 2016), 08.-10.06.2016, Luxembourg City, Luxembourg

Permalink: https://www.hzdr.de/publications/Publ-23718