Selective Separation of ultrafine particle systems - Chances and drawbacks when using non-polar oil as process aid


Selective Separation of ultrafine particle systems - Chances and drawbacks when using non-polar oil as process aid

Leistner, T.; Rudolph, M.; Peuker, U. A.

Abstract

Selective fine particle separation based on differences in particle surface properties represents a key unit operation in various industrial fields, e.g. in the mineral processing industry in the form of flotation processes. One of the main challenges today for separation processes is the efficient processing of ultrafine or even colloidal particles ranging from 0.1 to 10 µm in size, because these particles are usually poorly recovered by conventional froth flotation. A promising approach for ultrafines recovery is the use of a non-polar, water-immiscible oil phase, as reported in various investigations. In a particle mixture in which only selected particles are wetted by the oil phase, particle/oil aggregates could be achieved theoretically with a high degree of selectivity either by particle accumulation at the oil/water interface or even by particle transfer from the aqueous pulp into the oil phase. Hence, different techniques of oil-assisted separations can be distinguished, differing only in oil amount, addition and function. The principle of these approaches is directly related to the stabilization of emulsions by very fine solid particles (so called Pickering emulsions).

In this paper we present investigations on the potentially application of oil-assisted separation methods for ultrafines processing. The investigations performed involve the determination of the degree of particle/oil aggregation for ultrafine model particle systems in simple laboratory-scale batch trials as well as separation experiments using a modified separation column. Aliphatic oil phase of alkane basis and modifying reagents (to selectively control the particle surface properties and thus particle/oil aggregation) are used for the experiments. The response of the process, including recovery and selectivity is presented with regard to operational parameters like pH, oil droplet size, etc. Furthermore, analysis of zeta potentials of non-polar oil droplets and solid particles in modifying reagent solution and reagent-free solution are taken into account in order to interpret and physically model the particle/oil aggregation mechanism as well as the applicability of the processes.

  • Beitrag zu Proceedings
    PARTEC 2016 - International Congress on Particle Technology, 19.-21.04.2016, Nürnberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23901