Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies


Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies

Huittinen, N.; Arinicheva, Y.; Kowalski, P. M.; Vinograd, V. L.; Neumeier, S.; Bosbach, D.

Abstract

Here we study the homogeneity of Eu3+-doped La1-xGdxPO4 (x = 0, 0.11, 0.33, 0.55, 0.75, 0.92, 1) monazite-type solid solutions by a combination of Raman and time-resolved laser fluorescence spectroscopies (TRLFS) with complementary quasi-random structure-based atomistic modeling studies. For the intermediate La0.45Gd0.55PO4 composition we detected a significant broadening of the Raman bands corresponding to the lattice vibrations of the LnO9 polyhedron, indicating much stronger distortion of the lanthanide cation site than the PO4 tetrahedron. A distortion of the crystal lattice around the dopant site was also confirmed in our TRLFS measurements of Eu3+ doped samples, where both the half width (FWHM) of the excitation peaks and the 7F2/7F1 ratio derived from the emission spectra increase for intermediate solid-solution compositions. The observed variation in FWHM correlates well with the simulated distribution of Eu∙∙∙O bond distances within the investigated monazites. The combined results imply that homogenous Eu3+-doped La1-xGdxPO4 monazite-type solid solutions are formed over the entire composition range, which is of importance in the context of using these ceramics for immobilization of radionuclides.

Keywords: monazite; solid solution; Eu3+ incorporation; Raman; TRLFS; ab initio; force field simulations

Permalink: https://www.hzdr.de/publications/Publ-24094