Symmetry-Breaking Supercollisions in Landau-Quantized Graphene


Symmetry-Breaking Supercollisions in Landau-Quantized Graphene

Wendler, F.; Mittendorff, M.; König-Otto, J. C.; Brem, S.; Berger, C.; de Heer, W. A.; Böttger, R.; Schneider, H.; Helm, M.; Winnerl, S.; Malic, E.

Abstract

Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality of the sample. To explain this surprising behavior, we propose a novel symmetry-breaking defect-assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons, which drastically accelerate the carrier scattering time in low-quality samples. The gained insights provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders of magnitude.

Keywords: Carrier dynamics; graphene; Landau quantization; supercollisions

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Downloads

Permalink: https://www.hzdr.de/publications/Publ-24861