The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations


The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations

Stefani, F.; Galindo, V.; Giesecke, A.; Weber, N.; Weier, T.

Abstract

The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might limit the up-scaling of liquid metal batteries. Here, we focus on the chiral symmetry breaking and the related alpha-effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl number, we observe intrinsic oscillations of the alpha-effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.

  • Beitrag zu Proceedings
    10th PAMIR International Conference - Fundamental and Applied MHD, 20.-24.06.2016, Cagliari, Italy
    Proceedings of the 10th PAMIR International Conference - Fundamental and Applied MHD, 978-88-90551-93-2, 686-690
  • Open Access Logo Magnetohydrodynamics 53(2017)1, 169-178

Downloads

Permalink: https://www.hzdr.de/publications/Publ-24921