Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Magnetic properties of a Ho2Fe14Si3 single crystal

Andreev, A. V.; Gorbunov, D. I.; Skourski, Y.; Kuz'Min, M. D.; Tereshina, E. A.; Henriques, M. S.

Abstract

Magnetization of a Ho2Fe14Si3 single crystal was measured in a steady magnetic field of up to 9 T and in pulsed fields of up to 60 T applied along the principal axes. Ho2Fe14Si3 is a ferrimagnet below TC = 480 K, has a spontaneous magnetic moment of about 8 µB/f.u. (at T = 4.2 K) and exhibits a large easy-plane magnetic anisotropy. There is also a certain anisotropy within the basal plane, the b axis [120] being the easy-magnetization direction. In fields applied along the a and b axes field-induced first-order phase transitions are observed at 29 T and at 22 T, respectively. Along the easy axis b we observe also an S-shaped anomaly at about 47 T, which does not correspond to a phase transition. A simple model predicts that the two observed first-order transitions are the only ones taking place in Ho2Fe14Si3; the magnetization should subsequently grow continuously and arrive at saturation at ~100 T. This is in stark contrast to the behavior of the parent compound Ho2Fe17, where as many as three sequential first-order transitions are expected for H‖b. The reason for the disparity is that the basal-plane anisotropy constant KHo is at least one order of magnitude smaller in Ho2Fe14Si3 than it is in Ho2Fe17.

Beteiligte Forschungsanlagen

  • Hochfeld-Magnetlabor (HLD)

Permalink: https://www.hzdr.de/publications/Publ-25409