Writing magnonic waveguides in FeAl with an nano-sized ion beam


Writing magnonic waveguides in FeAl with an nano-sized ion beam

Osten, J.; Hula, T.; Wagner, K.; Xu, X.; Hlawacek, G.; Bali, R.; Potzger, K.; Lindner, J.; Fassbender, J.; Schultheiss, H.

Abstract

Spin waves, the eigen-excitations of ferromagnets, are promising candidates for spin transport in lateral devices. Fe60Al40 films in the B2 phase are paramagnetic. Starting from a FeAl film in the paramagnetic phase the incident ions randomize the site occupancies and, thereby, transform it into the chemically disordered, ferromagnetic A2 phase.
The aim is to investigate spin wave propagation in this ferromagnetic material in free standing structures as well as in ferromagnetic structures embedded within a paramagnetic matrix. Using Helium-Ion microscopy we create spatially well defined ferromagnetic FeAl conduits for spin waves with resolution down to nm range. Two different ferromagnetic stripes were implanted in a microstructured paramagnetic FeAl. A freestanding 2 𝜇m width stripe. And a stripe of the same width which was embedded in a wider paramagnetic FeAl stripe. For the excitation of spin waves we processed a microwave antenna on top of these stripes. To detect spin waves we employed Brillouin light scattering microscopy. We show that the spin wave spectra are influenced by the surrounding paramagnetic material due to a different internal field distribution. The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft within programme SCHU 2922/1-1.

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), 19.-24.03.2017, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-25574