Magnetic nanomaterials


Magnetic nanomaterials

Josten, E.; Glavic, A.; Meertens, D.; Wetterskog, E.; Bersgtröm, L.; Brückel, T.; Lindner, J.

Abstract

Magnetic nanomaterials and their assembly in highly correlated structures are of great interest for future applications as e.g. spin-based data storage media or as material for magnon-spintronics. These systems exhibit unique physical properties like superparamagnetism or symmetry breaking emerging due to their limited size. Individual nanomaterials can be combined as building blocks for so called superstructures where the combination of the different functionalities creates a novel multi-functional system.
Recently, more and more well-defined nanoobjects became available and the advances in measurement methods allow a characterization of these systems. For example, single micrometer-sized three-dimensional magnetic nanoparticle assemblies are available, exhibiting a high degree of structural order close to that of an atomic crystal [1,2]. These systems provide a good basis for the magnetic investigation of nanoparticle superstructures.
The work to be presented focuses on the fundamental structural and magnetic research on such objects and their functionalization. For the investigation we make use of different complementary measurement methods like small angle x-ray and neutron scattering or using microresonators, which provide the necessary sensitivity for the investigation of magnetic properties of a single nano- or micrometer-sized object using ferromagnetic resonance (FMR) [3].

Keywords: nanoparticles; scattering

  • Eingeladener Vortrag (Konferenzbeitrag)
    JCNS Workshop 2017, 10.-13.10.2017, Tutzing, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-26349