Injection locking of constriction based spin Hall nano-oscillators


Injection locking of constriction based spin Hall nano-oscillators

Hache, T.; Weinhold, T.; Arekapudi, S. S. P. K.; Hellwig, O.; Schultheiss, H.

Abstract

Spin-Hall nano-oscillators (SHNOs) are modern auto-oscillation devices. Their simple geometry allows for an optical characterization by Brillouin-Light-Scattering microscopy at room temperature. Here we report on the observation of auto-oscillations in constriction based SHNOs under the forcing influence of an added alternating current. We show the possibility of injection locking between the applied external signal and the auto-oscillations driven by a direct current. Within the locking range the frequency of the auto-oscillations is forced to the external stimulus. In addition the intensity of the oscillations is increased strongly and the linewidth decreases. Due to the controllability of the auto-oscillations of the magnetization, injection locking can be used to influence the properties of future communication technologies, i.e. based on synchronized constriction based spin Hall nano-oscillators arrays.

Keywords: spin Hall; spin Hall nano-oscillators; auto-oscillations; injection locking; phase locking; Auto-Oszillationen; Spin-Hall Nanooszillatoren

  • Poster
    2017 European School on Magnetism: Condensed Matter Magnetism : bulk meets nano, 09.-20.10.2017, Cargese, France
  • Poster
    Nano-Magnonics Workshop 2018, 19.-21.02.2018, Diemerstein, Kaiserslautern, Deutschland
  • Poster
    Intermag 2018, 23.-27.04.2018, Marina Bay Sands Convetion Center, Singapore
  • Poster
    IEEE Magnetics Society Summer school, 03.-08.06.2018, Universidas San Francisco de Quito, Equador
  • Poster
    The Joint European Magnetic Symposia 2018, 03.-07.09.2018, Rheingoldhalle, Mainz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-26590