XPS spectra, electronic structure, and magnetic properties of RFe5Al7 intermetallics


XPS spectra, electronic structure, and magnetic properties of RFe5Al7 intermetallics

Finkelstein, L. D.; Efremov, A. V.; Korotin, M. A.; Andreev, A. V.; Gorbunov, D. I.; Mushnikov, N. V.; Zhidkov, I. S.; Kikharenko, A. I.; Cholakh, S. O.; Kurmaev, E. Z.

Abstract

The results of X-ray photoelectron spectroscopy measurements (core levels and valence bands) of RFe5Al7 (R = Lu, Tm, Er, Ho, Dy, Tb, Gd) single crystals are presented in comparison with the results of bulk magnetization studies and electronic structure calculations. It is shown that the increase of the Curie temperature in RFe5Al7 from Tm to Gd is associated with an increase of the indirect R 4f - Fe 3d exchange interaction at the expense of the multiplicity 2S + 1 (statistical weight) in the ground state 2S + 1LJ of R3+ ions. The nonmonotonic behavior of the ferrimagnetic compensation temperature, Tcomp, as well as the values of the spontaneous magnetic moment, Ms, and formation energy, Eform, of the 4fn levels in R metals in a series from ErFe5Al7 to GdFe5Al7 are explained by the difference in the quantum numbers L, J and S of the ground state of R3+ ions, leading to a maximum value of Tcomp, Ms and Eform for the Dycontaining compound. The electronic structure of Gd/LuFe5Alsub>7 is calculated using the GGA+U approach, on the basis of which the physical mechanism and relative strength of the interatomic R-Fe and Al-Fe interactions are considered, and also the difference in the magnetic moments of iron atoms in different structural positions is explained.

Beteiligte Forschungsanlagen

  • Hochfeld-Magnetlabor (HLD)

Permalink: https://www.hzdr.de/publications/Publ-26676