Development of short-pulsed, high-field electromagnets for laser-based proton therapy


Development of short-pulsed, high-field electromagnets for laser-based proton therapy

Schürer, M.; Herrmannsdörfer, T.; Karsch, L.; Kroll, F.; Masood, U.; Sobiella, M.; Pawelke, J.

Abstract

The new particle acceleration by high intensity laser promises more compact and economic accelerators for cancer treatment. However, the resulting particle beam is pulsed with an ultra-short pulse-duration (~ ps) and has a large divergence and broad energy spectrum. Within the German joint research project “onCOOPtics” the clinical applicability of laser-driven proton beams is investigated including the development of a laser accelerator and suitable beam transport. The designed magnets are intended for a compact beam transport system (gantry) which efficiently transports proton pulses (≤ 220 MeV) from generation to treatment site. For this purpose the initially divergent proton beam is captured by a cylindrical electromagnet (solenoid), deflected by 45° dipole magnets and focussed by quadrupole magnets, while the energy window is selected by adjustable lead apertures. The implementation as short-pulsed (~ 1 ms) electromagnets allows to generate very high magnetic field strengths (up to 20 T) for short times, which enables the compact construction of both individual magnets and the whole gantry system. The pulse frequency of the magnets can be synchronized with that of the laser accelerator. The high field strengths demand high peak currents (up to 20 kA) and the resultant heating is dissipated by a cooling integrated into the magnets. The in-house developed pulsed magnets will enable a proton gantry 2-3 times smaller than those used in current clinical installations. Pulsed solenoids have been completely engineered and tested, and are routinely applied at laser particle accelerators. Two prototypes of a pulsed dipole and a first pulsed quadrupole were designed and manufactured, and their experimental characterization at the University Proton Therapy Dresden is in progress.
Pulsed electromagnets are crucial components of a compact gantry and after their extensive individual testing they will be combined step-by-step and used at the laser proton accelerator.

  • Poster
    Jahrestagung der BIOMEDIZINISCHEN TECHNIK und Dreiländertagung der MEDIZINISCHEN PHYSIK, 10.-13.09.2017, Dresden, Deutschland
    DOI: 10.1515/bmt-2017-5078
  • Open Access Logo Abstract in referierter Zeitschrift
    Biomedical Engineering / Biomedizinische Technik 62(2017)Suppl. 1, S412
    DOI: 10.1515/bmt-2017-5078

Permalink: https://www.hzdr.de/publications/Publ-26783