Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Thermal Conductivity Survey of Different Manufactured Insulation Systems of Rectangular Copper Wires

Seilmayer, M.; Katepally, V. K.

Abstract

Especially in high power applications, thermal design of magnetic field coils is a critical part of efficient electromagnetic system design. Since thermal expansion of the coil effects magnetic field geometry, temperature drop across the windings should be kept as low as possible. Here the insulation system between wires guides ohmic heat to the surface of the coil and influences the total thermal performance. Because of very less information about the general thermal performance and quality of manufactured multilayer insulation systems, the present survey investigates several variants made of enameled wires and Polyimide film wrapped wires. Hereby, different joining technologies like bonding or backfilling determine the thermal conductivity, which obviously differs from values of individual raw materials. Best performance could be gained with a Kapton– CR film wrapped wire, backfilled with high thermal conductivity resin. Finally, the survey concludes that manufactured insulation systems drop approximately ten to twenty percent of the thermal conductivity, which could be theoretically achieved by an optimal layer composition of individual raw materials.

Keywords: Power cable thermal factors; Insulation thermal factors; Coil design; DRESDYN; High Power

Permalink: https://www.hzdr.de/publications/Publ-27111