Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Analysis of Flow Patterns in High Gravity Equipment Using Gamma‑ray Computed Tomography

Groß, K.; Bieberle, A.; Gladyszewski, K.; Schubert, M.; Skiborowski, M.; Górak, A.

Abstract

Fluctuating and fast changing markets create a need for flexible equipment to adjust the production capacity to the actual demand. Application of Rotating Packed Beds (RPBs) in chemical production may meet these needs because of their modularity and flexibility. In this equipment the liquid traffic in the apparatus is caused by the centrifugal force and the mass transfer occurs mainly in a ring shaped rotating packing. Changing rotational speed offers an additional degree of freedom in equipment operation, as compared to standard columns. The advantages are an increasing capacity in a compact machine size, while providing enhanced mass transfer.
One of the reasons why RPBs are seldomly applied in Europe is the yet limited knowledge about the occurring flow mechanisms. Early studies by Burns et al. [1] mostly rely on visual observations and photographs. More recently Yang et al. [2] presented first results derived by the application of x-ray computed tomography. However, the results of their study are limited, because no gas flow was present in the experiments and their radial packing length was restricted to several centimeters.
In the present study we present observations of flow patterns within RPB, gained by using high energy intensity of the gamma radiation source. We investigated the flow behavior within an RPB with packing diameters of up to 480 mm. In addition to the classical computed tomography, angular resolved analysis is presented which allows for the observation of flow patterns relative to the motion of the rotor. Therefore they give insight about lateral movement of the liquid and first guidelines for the design of packings specific to RPBs can be made.

Beteiligte Forschungsanlagen

  • TOPFLOW-Anlage
  • Vortrag (Konferenzbeitrag)
    Jahrestreffen der ProcessNet-Fachgruppen Fluidverfahrentechnik, Membrantechnik und Mischvorgänge, 27.-28.02.2018, München, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-27113