Entwicklung und Synthese neuartiger fluorhaltiger Liganden zur molekularen Bildgebung des Adenosin A2B-Rezeptors im Gehirn mittels Positronen-Emissions-Tomographie


Entwicklung und Synthese neuartiger fluorhaltiger Liganden zur molekularen Bildgebung des Adenosin A2B-Rezeptors im Gehirn mittels Positronen-Emissions-Tomographie

Lindemann, M.

Abstract

Der G-Protein-gekoppelte A2B-Rezeptor unterscheidet sich von den anderen Adenosinrezeptorsubtypen (A1, A2A, A3) durch die niedrige Affinität zu seinem endogenen Liganden Adenosin. Es wird beschrieben, dass der Rezeptor in verschiedenen pathologischen Prozessen, die durch eine erhöhte Adenosinkonzentration ausgezeichnet sind, wie beispielsweise bei Entzündungen (Inflammation), Hypoxie oder auch Krebs, eine wichtige Rolle spielt. Ziel dieser Arbeit ist die Entwicklung eines Fluor-18 markierten Radioliganden für die molekulare Bildgebung des A2B-Rezeptors im Organismus bzw. im speziellen des Gehirns mittels PET. Es soll damit der Einfluss des Rezeptors bei neurodegenerativen, neuroinflammatorischen und neuroonkologischen Erkrankungen untersucht werden. Die hier erstellte Arbeit basiert auf drei verschiedenen Leitstrukturen: den Pyrazinen (PA), Pyrimidinen (PYM) und Xanthinen (PXS). Für die ersten beiden Strukturklassen wurden zunächst die Leitverbindung und verschiedene fluorierte Derivate dargestellt. Für die Xanthine wurden zwei verschiedene Derivate synthetisiert. Alle Verbindungen wurden hinsichtlich ihrer Affinität und Selektivität gegenüber den Adenosinrezeptorsubtypen untersucht. Für die Klasse der Pyrazine wurde die bis dahin beste Verbindung PA51 ausgewählt. Trotz geringer Defizite gegenüber der Selektivität zu den anderen Adenosinrezeptorsubtypen, sollte PA51 zur Untersuchung der Hirngängigkeit der Verbindungsklasse genutzt werden. Nach erfolgreicher manueller Radiomarkierung und Transfer in eine automatisierte Radiosynthese, wurde die In-vivo-Gehirnaufnahme (Autoradiographie, PET) und der In-vivo-Metabolismus von [18F]PA51 in Mäusen untersucht. Bei In-vivo- Verteilungsstudien in Mäusen wurde eine homogene Verteilung des Radiotracers im Gehirn bestimmt. Des Weiteren wurden Gehirn- und Plasmaproben zu unterschiedlichen Zeitpunkten mit verschiedenen Methoden (RP-HPLC und MLC) auf enthaltene Radiometabolite untersucht. Nach 30 min p.i. konnten 70% an intaktem Radiotracer und ein Hauptradiometabolit mit einem Anteil von 30% im Gehirn nachgewiesen werden. Dessen Struktur konnte durch Synthese einer nichtradioaktiven Vergleichssubstanz aufgeklärt werden. Auf Grund dieser Ergebnisse ist die Substanzklasse der Pyrazine nicht geeignet als PET Radiotracer. Im Vergleich zu den Pyrazinen sind die Pyrimidinderivate in der Literatur als metabolisch stabiler beschrieben. Aus diesem Grund wurde zunächst die Leitverbindung PYM80, unter leichter Modifizierung der beschriebenen siebenstufigen Syntheseroute, dargestellt. Die fluorierte Verbindung PYM81 wurde über eine neu entwickelte sechsstufige Syntheseroute dargestellt. Diese weist eine hohe Affinität und Selektivität zum A2B-Rezeptor auf, weshalb PYM81 großes Potential für die Anwendung als neuartiger fluorierter Radioligand für die molekulare Darstellung des A2B-Rezeptors mittels PET besitzt. Als dritte Strukturklasse wurden zwei Xanthinderivate PXS7-1 und PXS7-2 dargestellt. Diese Strukturen basieren auf dem literaturbekannten, hochaffinen und selektiven Liganden PSB-603. Durch Reduzierung des sterisch anspruchsvollen Sulfonamidrestes sollten die molare Masse und die stark polaren Eigenschaften dieser Verbindungsklasse gesenkt werden. An Stelle der sterisch anspruchsvollen Sulfonamidreste sollten kleine Substituenten wie 4-Fluorpiperidin oder 4-Amino-2-fluorpyridin eingeführt werden. Diese beiden Verbindungen zeigten moderate Affinitäten und Selektivitäten gegenüber dem A2B-Rezeptor, weshalb weitere strukturelle Modifizierungen, zur Steigerung der Affinität und Selektivität zum A2B-Rezeptor, folgen sollen.

The G protein-coupled A2B receptor differs from other adenosine receptor subtypes (A1, A2A, A3) by its low affinity towards the endogenous ligand adenosine. It is suggested to be involved in various pathological processes accompanied by increased levels of adenosine, e.g. inflammation, hypoxia, and cancer. In this work, the development and synthesis of a fluorine-18 labelled radioligand with the particular aim for the imaging of the A2B receptor is described, to enable the investigation of the function and expression of A2B receptor in the organism and the influence of neurodegenerative, neuroinflammatory and neurooncological processes with PET. This work is based on three different lead structures: pyrazines (PA), pyrimidines (PYM), and xanthines (PXS). For the first two structure classes, the syntheses of the lead and different fluorinated compounds were performed. For the xanthines two different molecules were synthesized. The binding affinities for the different adenosine receptor subtypes were determined for each compound. To check the brain penetration of the pyrazine class, the best candidate so far, PA51 (although lacking selectivity), was labeled with 18-fluorine. After transfer of the manual radiolabeling procedure to the automated synthesis module, the in vivo brain uptake and the in vivo metabolism studies of [18F]PA51 in mice were performed. The in vivo brain uptake studies (brain sampling, autoradiography and PET) showed a homogeneous distribution of [18F]PA51. After different time intervals, brain and plasma samples were investigated by using different methods for metabolite analytics, showing only 70% of intact radiotracer in the brain 30 min p.i. A main brain radiometabolite with an amount of 30% after 30 min p.i. was structurally identified by use of a synthesized nonradioactive reference compound. In summary, this compound class is not suitable for the use as PET radiotracer, because of the fast metabolism of the compound and the formation of a brain-penetrable radiometabolite. The pyrimidine derivatives are described in literature as more metabolically stable as the pyrazines. For this compound class, the lead compound PYM80 was synthesized in a slightly modified seven-step synthesic route. A fluorinated derivative, PYM81, was synthesized over a newly developed six-step synthesic route. The compound showed good affinity and selectivity towards the A2B receptor. Therefor PYM81 has a high potential as a novel fluorinated radioligand for the molecular imaging of the A2B receptor with PET. As third class, xanthine derivatives were synthesized because of the highly affine and selective lead compound PSB-603. Due to the high molar mass and high polarity of these compounds the sulfonamide group was modified. Instead of this group, a small 4-amino-2-fluoropyridine or 4-fluoropiperidine groups was introduced to form derivatives PXS7-1 and PXS7-2. The compounds showed moderate affinities and selectivities for the A2B receptor. In conclusion, various fluorinated compounds were synthesized and showed different affinities and selectivities for the A2B receptor and its subtypes. Furthermore, the synthesis of additional fluorinated structures with the pyrimidine lead structure is required to enhance affinity and selectivity. For a first checkup of the brain uptake of this compound class, PYM81 needs to be radiolabeled with fluorine-18 because of the literature described higher metabolic stability in comparison to the pyrazine derivatives. PYM81 and the class of pyrimidines had a high potential as novel ligands for imaging the A2B receptor with PET in the brain.

Keywords: A2B-Rezeptor; 18-Fluor; Pyrazine; Pyrimidine; Xanthine; Pyrido[2; 3-d]pyrimidin-2; 4(1H; 3H)dione; Positronen-Emissions-Tomographie

  • Dissertation
    Universität Leipzig, 2018
    Mentor: Prof. Dr. P. Brust, Dr. B. Wenzel
    274 Seiten

Permalink: https://www.hzdr.de/publications/Publ-27776