Multi-fluid models for gas-liquid flows


Multi-fluid models for gas-liquid flows

Lucas, D.; Krepper, E.; Liao, Y.; Höhne, T.; Rzehak, R.; Schlegel, F.; Ziegenhein, T.

Abstract

The two- or multi-fluid approach is frequently used for NRS-related simulations of gas-liquid flows. To enable reliable predictions the closure models have to reflect the involved local physical phenomena at the non-resolved scale properly. To consolidate the CFD-modelling in the frame of the multi-fluid approach the so-called baseline model strategy was recently proposed (Lucas et al., 2016). The paper discusses a long-term strategy for the baseline model development and ways to obtain or improve closure models. Guidelines for the model development are given by listing requirements for appropriate closure models as well as frequently made mistakes. This is illustrated by examples for recent developments done for HZDR baseline models for poly-disperse bubbly and segregated flows. Beside an update on recent developments ongoing and planned activities are discussed. Both models are united in the GENTOP-concept which allows simulating flow pattern transitions. Finally, perspectives for the use of OpenFOAM for NRS are discussed.

Keywords: CFD; multiphase; closure model; validation

  • Beitrag zu Proceedings
    OECD/NEA&IAEA CFD4NRS-7 Workshop Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation, 04.-06.09.2018, Shanghai, China
  • Vortrag (Konferenzbeitrag)
    OECD/NEA&IAEA CFD4NRS-7 Workshop Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation, 04.-06.09.2018, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-27927