On the effect of water hardness in fluorite flotation – the role of ion specificity


On the effect of water hardness in fluorite flotation – the role of ion specificity

Michaux, B.; Rudolph, M.; Reuter, M. A.

Abstract

It is relatively well-established in the literature that the flotation of calcium minerals using fatty acids as collector is very sensitive to the process water composition. In particular, hard waters have often been reported to strongly reduce the target mineral recoveries due to the formation of insoluble compounds such as calcium and / or magnesium dioleate, thus reducing the amount of collector available for adsorption onto the mineral surface. In this study, the flotation of a fluorite pre-concentrate was performed with tall oil, an industrial collector essentially containing fatty acids. The tests were performed in a variety of synthetic waters to simulate multiple degrees of water hardness, and to differentiate the role of magnesium and calcium ions on the flotation performance. The flotation tests revealed that, under the studied conditions, a significant difference between flotation in calcium-rich and magnesium-rich waters was observed, suggesting strong ion-specific effects in the system. Specifically, calcium-rich waters slightly improved the fluorite recovery, whereas magnesium-rich waters caused a decrease in recovery by as much as 20%. This paper is focused on the flotation kinetics aspect of the system. This approach highlighted the interesting finding that calcium ions did not simply increase the fluorite recovery, but also significantly increased its flotation kinetics. The magnesium ions, on the other hand, had the exact opposite effect.

Keywords: Water hardness; ion specificity; flotation kinetics; fluorite; fatty acids

  • Beitrag zu Proceedings
    International Mineral Processing Congress, 17.-21.09.2018, Moscow, Russia

Permalink: https://www.hzdr.de/publications/Publ-28028