Calcium molybdate, CaMoO₄: a promising target material for 99m-Tc and its potential applications in nuclear medicine and nuclear waste disposal


Calcium molybdate, CaMoO₄: a promising target material for 99m-Tc and its potential applications in nuclear medicine and nuclear waste disposal

Johnstone, E. V.; Czerwinski, K. R.; Hartmann, T.; Poineau, F.; Bailey, D. J.; Hyatt, N. C.; Mayordomo, N.; Nuñez, A.; Tsang, F. Y.; Sattelberger, A. P.; German, K. E.; Mausolf, E. J.

Abstract

Calcium molybdate (CaMoO₄ ) is a robust, inorganic material known for its favorable physicochemical properties making it ideal for a wide scope of applications concerning optics (i.e., phosphors, scintillators, laser hosts, etc.), nuclear waste encapsulation and disposal, corrosion inhibition, etc. Calcium molybdate occurs in nature as the mineral Powellite, and the compound adopts the scheelite (CaWO₄ ) structure-type with Mo fully oxidized in the +6-oxidation state. This Mo-containing ceramic phase exhibits limited insoluble in aqueous environments and relative thermal stability at elevated temperatures. In the laboratory, CaMoO₄ can be synthesized straightforward from the stoichiometric solid-state reaction MoO₃ with the respective calcium oxide or carbonate, e.g., CaO or CaCO₃, at elevated temperatures, or alternatively via co-precipitation, sol-gel, or mechanochemical methods. Depending on synthetic conditions, single phase nano-powders to monoliths can be generated and tailored for its successive application. Likewise, the scheelite structure type can incorporate different doping elements into the host lattice, such as Pb2+ or elements arising from the lanthanoid series, which are used for applications with phosphors. , ,
On the periodic table, Mo (Z = 42) is located on the 5th row within the transition metals and precedes the lightest, inherently radioactive element, technetium (Tc, Z = 43). Molybdenum is characterized by an assortment of naturally occurring isotopes (i.e., 92Mo 14.53%, 94Mo 9.16%, 95Mo 15.84%, 96Mo 16.67%, 97Mo 9.60%, 98Mo 24.39%, and 100Mo 9.82%) making it a suitable starting material for the transmutation to an array of different Tc isotopes depending on isotope enrichment, particle beam type (e.g., proton, deuteron, electron, neutron, photon, etc.), and beam energy. One of the most recognized Mo-Tc radionuclidic parent-daughter couples is 99Mo-99mTc, where the daughter isotope 99mTc has been notoriously branded as the workhorse of the nuclear diagnostic imaging industry used worldwide in 30 to 40 million procedures annually, i.e., ~ 9,000 6-day Ci at end of processing (EOP) per week. As the international geopolitical attitude towards using highly enriched uranium (HEU) for the production of 99Mo begins to shift, the use of non-fission sources for the production of 99mTc is becoming increasingly more vital, and new methods for production and separation are desperately being sought. For example, the United States of America currently has no domestic supply in place for the production of 99mTc, although it is responsible for half of the world’s usage.
When considering both, the isotopic and physicochemical composition and properties of Mo and CaMoO₄, strong arguments can be made to pursue the better understanding of CaMoO₄ and its relationship as a host material for direct transmutation of Mo → Tc and / or post-processing integration of Tc, specifically 99mTc at the atomistic level to weight percentages in its fundamental structure for applications such as nuclear waste disposal and radiopharmaceuticals. In this work, the synthesis and irradiation of CaMoO₄ using a modular, fusion-based neutron source and its successive characterizations are reported. Further discussions are presented considering these empirical data and their context with potential applications in the realms of nuclear medicine and materials.

Keywords: technetium; waste disposal encapsulation; molybdate; ceramics; post-irradiation

  • Beitrag zu Proceedings
    10th Symposium on Technetium and Rhenium science and application, 03.-06.10.2018, Moscow, Russia
    10th Symposium on Technetium and Rhenium science and application, 978-5-9933-0132-7
  • Vortrag (Konferenzbeitrag)
    10th Symposium on Technetium and Rhenium science and application, 03.-06.10.2018, Moscow, Russia

Permalink: https://www.hzdr.de/publications/Publ-28215