A spectroscopic investigation of Eu3+ incorporation in LnPO4 (Ln = Tb, Gd1–xLux, x = 0.3, 0.5, 0.7, 1) ceramics


A spectroscopic investigation of Eu3+ incorporation in LnPO4 (Ln = Tb, Gd1–xLux, x = 0.3, 0.5, 0.7, 1) ceramics

Huittinen, N.; Lösch, H.; Hirsch, A.; Holthausen, J.; Peters, L.; Xiao, B.; Neumeier, S.; Schmidt, M.

Abstract

Introduction
In recent years, rare-earth orthophosphates LnPO4 have attracted attention as potential hosts for the immobilization of specific radioactive waste streams.
Objectives
In the present work, the incorporation of Eu3+ in LnPO4 host materials predominantly having the xenotime structure has been investigated on the molecular level. As host cations we used Tb and Lu as well as a solid solution series of Gd1–xLuxPO4 (x = 0.3, 0.5, 0.7). The site selective laser luminescence spectroscopy (TRLFS) technique was applied to study the distribution of Eu3+ in the synthetic xenotime phases, while PXRD and Raman spectroscopy were used for bulk structural investigations direct after synthesis and after one year of storage at ambient conditions.
Results
The PXRD patterns of the solid solution series show the formation of a single xenotime phase up to a substitution of x = 0.5 both before and after aging. The TRLFS emission spectra also show that Eu3+ is substituted for the host cation site in the xenotime hosts. After one year, the emission spectra show a broad dominant signal between the transitions regions of the 7F1‒ and 7F2‒bands, and the luminescence signal no longer corresponds to Eu3+‒incorporation in a xenotime environment, only. These changes indicate a time-dependent change in the local structure of the europium dopant. Based on these observations we suggest an exclusion of Eu3+ from the crystal structure and subsequent migration of the cation to the grain boundaries during aging. The migration of Eu3+ in void spaces through the crystal structure could be responsible for the additional signals in the emission spectra, while the narrow void space forces an overlap between Eu3+ and oxygen atomic orbitals, resulting in the broad signal between the 7F1‒ and 7F2‒bands.
Conclusions
The segregation of Eu3+ to grain boundaries after a relatively short aging in the xenotime materials, indicates that xenotime ceramics will not serve as a suitable waste form for trivalent actinides from high–level nuclear waste.

  • Vortrag (Konferenzbeitrag)
    27th Annual Meeting of the German Crystallographic Society (DGK), 25.-28.03.2019, Leipzig, Germany

Permalink: https://www.hzdr.de/publications/Publ-29063