A Kinetic Study On Grinding And Flotation Of Untreated And Microwave-Treated Copper Sulfide Ore


A Kinetic Study On Grinding And Flotation Of Untreated And Microwave-Treated Copper Sulfide Ore

Gholami, H.; Rezai, B.; Hassanzadeh, H.; Mehdilo, A.; Yarahmadi, M. R.; Rudolph, M.

Abstract

The present work aims to study the impact of microwave irradiation on grinding and flotation kinetics of a porphyry copper ore. For this purpose, the kinetic trails were carried out on the samples (d80=1.5mm) pretreated in the absence and presence of microwave irradiation varying the exposure time from 15 to 150s. Semi-quantitative X-ray diffraction technique (SQ-XRD), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) techniques were used for elemental, surface and mineralogical analyses. Breakage and selection functions were determined using the top-size-fraction method. Commonly used first-order flotation kinetic model and Berube model were utilized for estimating the related parameters. The results disclosed that the ore’s breakage rate constant monotonically increased by increasing the exposure time particularly for the coarsest fraction size (400µm) owing to the creation of thermal stress fractures alongside grain boundaries. Chalcopyrite’s flotation rate constant and infinitive recovery of pyrite improved while samples irradiated to the shorter exposure time (<60s) in comparison with the untreated ones. We finally concluded that the MW-treated copper ore was ground faster and floated similarly compared to the untreated one. Further fundamental studies are required for profound understanding of these phenomena from analytical points of view.

Keywords: Kinetic; microwave; grinding; flotation; copper sulfide ore

  • Contribution to proceedings
    IMPC - EURASIA 2019, 30.10.-02.11.2019, Antalya, Turkey

Permalink: https://www.hzdr.de/publications/Publ-29633