Modelling heat and mass transport in Liquid Metal Batteries


Modelling heat and mass transport in Liquid Metal Batteries

Personnettaz, P.; Weber, N.; Weier, T.

Abstract

Liquid metal batteries (LMBs) are a promising electrical energy storage (EES) technology. An LMB is an electrochemical cell made of three stably stratified liquid layers. Two liquid metal electrodes are separated by a molten salt electrolyte. The high operating temperatures limit experimental studies to few measurable quantities. Numerical studies based on continuum mechanics are required to understand the relevant physical mechanisms. Simultaneous charge, heat, mass and momentum transfer together with chemical and electrochemical reactions takes place in the bulk fluids and at the liquid interfaces. These processes affect the electrochemical behavior of LMBs and the cell efficiency. In the initial presentation we have presented the study of heat and mass transport in a three layer liquid metal battery developed with a segregated multi-region approach. In the final presentation we have presented the study of thermal convection in a three layer liquid metal battery developed with a coupled single-region approach.

Keywords: Liquid metal batteries; transport phenomena; mass trasnport; heat transfer; openFOAM

  • Vortrag (Konferenzbeitrag)
    NUMAP-FOAM Summer School 2019, 19.-30.08.2019, Zagreb, Hrvatska

Permalink: https://www.hzdr.de/publications/Publ-29644